Wednesday, March 31, 2010

A View of the JWST NIRSpec Instrument



The Universe has always set the standard for colors. It produces all possible combinations of colors, granted not always in the visible light spectrum. But figuring out how these nuances intertwine is absolutely essential to, for example, determining the distance a certain object is from Earth, what chemicals it contains and so on. This is why the most impressive space observatory ever built, the James Webb Space Telescope (JWST), will feature an instrument perfectly capable of extracting this sort of data from whatever wavelengths of light enter its detectors.

The Near-Infrared Spectrograph (NIRSpec) device will be one of the most advanced spectrographs ever developed, and undoubtedly the most complex to ever fly to space. EADS/Astrium is the European Space Agency's (ESA) prime contractor for the overall NIRSpec instrument, but some of the components were constructed at the NASA Goddard Space Flight Center (GSFC), in Greenbelt, Maryland. The prototype for the actual NIRSpec instrument that will fly on the JWST recently arrived at the GSFC for preliminary testing, from its construction site in Germany.

“A spectrograph is an instrument that separates light into a spectrum. One example of a spectrograph that most folks know about is a chandelier (or diamond ring). When sunlight shines through it, it breaks it up into colors. NIRSpec analyzes those colors from deep space to help us solve mysteries,” explains GSFC expert Bernie Rauscher. He is the deputy project scientist of the telescope's Integrated Science Instrument Module (ISIM) and also the principal investigator of the NIRSpec Detector Subsystem.

This particular spectrograph will have the ability to analyze more than 100 cosmic objects at the same time, as its components were especially designed for this task. The instrument will collect readings in the infrared portion of the electromagnetic spectrum, which will enable researchers analyzing data from the instrument to determine the age, chemical composition and distances of faint galaxies. One of the primary mission goals for the James Webb Space Telescope will be to determine how galaxies began to form in the early Universe, and so this ability that the NIRSpec has will be absolutely fundamental to completing its mission.

Tuesday, March 30, 2010

Hubble's successor one step closer to completion



A working replica of MIRI - the pioneering camera and spectrometer for the James Webb Space Telescope - has just been shipped (16th March) from the Science and Technology Facilities Council’s Rutherford Appleton Laboratory to NASA’s Goddard Space Flight Centre, bringing the Webb Telescope one small step closer to embarking on its journey into space where it will produce the sharpest images yet of the farthest depths of the cosmos.

The Webb telescope, a joint collaboration between NASA, the European Space Agency (ESA) and the Canadian Space Agency (CSA), is a large, cold orbiting infrared observatory that will succeed the currently operating Hubble Space Telescope. With the help of MIRI and its three other sophisticated instruments, it will be able to examine the first light in the universe and investigate the evolution of galaxies and the process of star and planet formation - helping to answer some of the fundamental questions about the origin of our Universe.

MIRI (Mid InfraRed Instrument) is an infrared camera and spectrometer that will operate as part of the Webb telescope to observe the Universe at wavelengths that are difficult or impossible to observe from the ground. It is an international project combining the talents of a consortium of European partners, the European Space Agency, and an international science team with those of scientists and engineers at NASA’s Jet Propulsion Laboratory.

The MIRI Structural Thermal Model realistically replicates the thermal, mechanical and optical alignment characteristics of the real flight model MIRI. It was assembled at the Science and Technology Facilities Council’s Rutherford Appleton Laboratory (RAL) from modules built by the University of Leicester, CEA in France, CSL in Belgium, JPL in the USA, Nova-Astron in the Netherlands, STFC’s UK ATC, & the Danish Space Research Centre, with system engineering, product assurance and management provided by Astrium Ltd. It has already been subjected to an extensive series of tests at RAL, and later this year it will be used at NASA’s Goddard Space Flight Centre for pre-integration testing with the Integrated Science Instrument Model (ISIM) - the key element of JWST that holds all four instruments in the correct positions. Meanwhile engineers across Europe and the USA are pressing ahead at full speed to build the flight instrument, which is due for delivery next year.

“The MIRI team is delighted to have reached this important technical milestone after many years of design and development work for the instrument” said the European PI, Gillian Wright of STFC’s UK Astronomy Technology Centre.

George Rieke, MIRI Science Team Lead at University of Arizona, Tucson added, "It is inspirational to see how well the team has worked to make this happen." "It is another big step toward making MIRI a reality."

When launched in 2014, the Webb telescope will have a set of four instruments, including MIRI. MIRI will provide enormous increases in sensitivity, spatial and spectral resolution for three key reasons: Firstly, its location in space will remove the blocking and large background noise effects of the atmosphere which limit ground-based telescopes. Secondly, the telescope is cooled to a very low temperature, reducing its emission and greatly improving its performance. Thirdly, the telescope’s mirror is larger then any other infrared space observatory, giving improved angular resolution and collecting area. This combination makes the Webb telescope a very powerful space observatory which promises to revolutionise our view of the cosmos yet again - just as Hubble did.

The UK is playing a key role in the Webb telescope with the Science and Technology Facilities Council (STFC) leading the European development of the MIRI Optical System. This UK contribution includes leadership by the European PI based at STFC’s UK ATC; Astrium Ltd providing the project management, PA, and system design/engineering; STFC’s Rutherford Appleton Laboratory (RAL) responsible for the Assembly, Verification and Test and the thermal systems work; STFC’s UK ATC designing and building the spectrometer pre-optics module; and the University of Leicester leading the structure and mechanical systems work for MIRI.

Dr David Parker, Director of Space Science and Exploration at the British National Space Centre (BNSC), said, “With the delivery of this sophisticated replica of MIRI, we’ve reached another important milestone in the build of this new window on the ancient Universe. Right now, the UK is involved in many exciting, new space projects. With the upcoming creation of a UK executive space agency we will ensure that the UK continues to play key roles in amazing discovery machines like James Webb Space Telescope.”

Professor Richard Holdaway, Director of Space Science and Technology at the Science and Technology Facilities Council’s Rutherford Appleton Laboratory, added, “The shipping of the MIRI replica to NASA’s Goddard Space Flight Centre, highlights again, the effectiveness of international collaboration on a mission of this size. Each organisation, including Rutherford Appleton Laboratory’s Space Science and Technology Department, contributes their own set of skills and expertise to the project, gradually steering us towards its completion”.

Matt Greenhouse, Project Scientist for the Webb telescope Science Instrument Payload at NASA's Goddard Space Flight Center, Greenbelt, Md. said, "Receipt of the MIRI structural thermal (STM) model represents a major milestone in 8 years of development work by the joint ESA and JPL instrument team. Tests with this prototype model of the MIRI, conducted at Rutherford Appleton Laboratories in the UK, have shown that this science instrument is on track to meet all of its performance requirements. Upon receipt of the STM, GSFC engineers will begin testing it with supporting systems in the Webb telescope Integrated Science Instrument Module to facilitate smooth integration of the flight model."


Color It Ready - Webb Telescope Instrument Now at Goddard


The cosmos is filled with color, and color is a key in determining age, chemical composition and how far objects are from Earth. To help identify these colors and objects the James Webb Space Telescope will be using a spectrograph called NIRSpec. Recently, the engineering test unit for the Webb telescope's Near-Infrared Spectrograph (NIRSpec) instrument arrived at NASA's Goddard Space Flight Center, Greenbelt, Md. from its manufacturer in Germany for preliminary testing.

"A spectrograph is an instrument that separates light into a spectrum," said Bernie Rauscher of NASA Goddard. "One example of a spectrograph that most folks know about is a chandelier (or diamond ring). When sunlight shines through it, it breaks it up into colors. NIRSpec analyzes those colors from deep space to help us solve mysteries." Rauscher is the Principal Investigator for the NIRSpec Detector Subsystem and the Deputy Project Scientist of the Webb's Integrated Science Instrument Module (ISIM).

The NIRSpec instrument will be the principal spectrographic instrument on-board the Webb telescope.

The components that make up NIRSpec will be sensitive to infrared wavelengths from the most distant galaxies and will be capable of obtaining spectra of more than 100 objects in the cosmos simultaneously. Determining an object's spectra is important, because it will help scientists determine the age, chemical composition and distances of faint galaxies. These measurements are key to unraveling the history of galaxy formation in the early Universe - one of the primary science goals of the Webb mission.

One unique technology in the NIRSpec that enables it to obtain those 100 simultaneous spectra is a micro-electromechanical system called a "microshutter array." NIRSpec's microshutter cells, each approximately as wide as a human hair, have lids that open and close when a magnetic field is applied. Each cell can be controlled individually, allowing it to be opened or closed to view or block a portion of the sky. It is this adjustability that allows the instrument to do spectroscopy on so many objects simultaneously. Because the objects NIRSpec will be looking at are so far away and so faint, the instrument needs a way to block out the light of nearer bright objects. Microshutters operate similarly to people squinting to focus on an object by blocking out interfering light.

NASA Goddard has a lot invested in the NIRSpec. Goddard built NIRSpec's detector and microshutter systems. EADS/Astrium is the European Space Agency's (ESA) prime contractor for the overall NIRSpec instrument. The prototype instrument was integrated and tested at Astrium's facility in Munich, Germany, before being shipped to Goddard.

Now that it has arrived at Goddard, the NIRSpec engineering test unit will go through pre-integration testing with the ISIM, which acts as a "chassis" to the Webb telescope observatory. Along with the other instruments, NIRSpec will be fitted into the ISIM, which is also currently at Goddard. The engineering test unit reproduces the physical, thermal, electrical and optical (up to the Micro-Shutter Array unit) properties of the flight model.

The James Webb Space Telescope is the next-generation premier space observatory, exploring deep space phenomena from distant galaxies to nearby planets and stars. The Webb Telescope will give scientists clues about the formation of the universe and the evolution of our own solar system, from the first light after the Big Bang to the formation of star systems capable of supporting life on planets like Earth.

The Webb Telescope project is managed at NASA's Goddard Space Flight Center in Greenbelt, Md. The telescope is a joint project of NASA, the European Space Agency and the Canadian Space Agency, and will launch in 2014.

For information about NASA's James Webb Space Telescope, visit:

http://www.jwst.nasa.gov/

For more information about the NIRSpec, visit:

http://www.jwst.nasa.gov/nirspec.html

For more information, visit the NIRSpec website at the Space Telescope Science Institute:

http://www.stsci.edu/ngst/instruments/nirspec/

Extracting Information From Starlight


The cosmos is filled with stars. However, the closest star beyond the Sun is so far away, that it would take the fastest spacecraft 75,000 years to reach it. Astronomers can't study the cosmos by sending probes to gather information about other stars, as we do with our own Sun and its planets. Fortunately they don't have to. The information comes to us at the speed of light!

The light of stars is produced by atoms and molecules that encode, in the starlight itself, key science information about their chemical composition, temperature, pressure, and velocity. To receive and extract this information, astronomers will use the James Webb Space Telescope and a first-of-its kind science instrument whose prototype has just arrived at NASA's Goddard Space Flight Center, Greenbelt, Md. from its manufacturer in Germany.

The Webb telescope contains a giant 25 square meter (~30 square yard) mirror that will collect the faint light from distant stars and feed it to one of four science instruments that are each designed to extract a specific type of information contained in the light itself.

One of the most scientifically powerful instruments is a Near-Infrared multi-object Spectrograph (NIRSpec) that disperses the white star light into a spectrum so that the contribution of individual atoms and molecules in the star can be seen.

The atoms and molecules in the star imprint lines on this spectrum that uniquely fingerprint each chemical element and reveal a wealth of information about physical conditions in the star. Spectroscopy (the science of interpreting these lines), is among the sharpest tools in the shed for exploring the cosmos.

Many of the objects that the Webb will study, such as the first galaxies to form after the Big Bang, are so faint, that the Webb's giant mirror must stare at them for hundreds of hours in order to collect enough light to form a spectrum. In order to study thousands of galaxies during its 5 year mission, the NIRSpec is designed to observe 100 objects simultaneously.

The NIRSpec will be the first spectrograph in space that has this remarkable multi-object capability. To make it possible, Goddard scientists and engineers had to invent a new technology micro-shutter system to control how light enters the NIRSpec.

Although the night sky appears black, it's not really dark. If your eyes could see in the infrared, the night sky would appear to glow just as the daytime sky glows at visible wavelengths. The infrared glow of the night sky, known as the Zodiacal light, is produced by a cloud of dust that surrounds the Earth and Mars that the Webb must look through. Observing the first galaxies through this Zodiacal light, is analogous to observing stars during the daytime with your eye.

To prevent the NIRSpec from being blinded by the Zodiacal light, the Webb telescope forms a magnified image of the sky onto a programmable array of 250,000 shutters that are each the diameter of a human hair. Shutters under objects in this image for which a spectrum is desired, are commanded open allowing their light to enter the NIRSpec. The remaining shutters are held closed to minimize the Zodiacal light that can enter NIRSpec and reduce its sensitivity.

The NIRSpec micro-shutter system is one of 10 technologies that had to be invented to make the Webb mission possible. During the Webb mission, each shutter must withstand approximately 100,000 open/close cycles while operating at 40 K (-230 oC).

In order to make the large NIRSpec instrument light enough to fly on the Webb, its structure and optics are made of an advanced ceramic material called silicon carbide. The NIRSpec is among the most advanced astronomy instruments ever built.

NASA Goddard has a lot invested in the NIRSpec. Goddard built NIRSpec's detector and microshutter systems. EADS/Astrium is the European Space Agency's (ESA) prime contractor for the overall NIRSpec instrument. The prototype instrument was integrated and tested at Astrium's facility in Munich, Germany, before being shipped to Goddard.

Now that it has arrived at Goddard, the NIRSpec prototype will go through pre-integration testing with electronic and mechanical systems of the Webb's Integrated Science Instrument Module (ISIM). Along with the other prototype instruments, the NIRSpec will be fitted into the ISIM flight structure, which is also currently at Goddard.

These prototype instrument models are flight-like in form, fit, and function. They enable engineers to develop and practice integration and test procedures before handling the actual flight units.

The James Webb Space Telescope is the next-generation premier space observatory, exploring deep space phenomena from distant galaxies to nearby planets and stars. The Webb Telescope will give scientists clues about the formation of the universe and the evolution of our own solar system, from the first light after the Big Bang to the formation of star systems capable of supporting life on planets like Earth.

The Webb Telescope project is managed at NASA's Goddard Space Flight Center in Greenbelt, Md. The telescope is a joint project of NASA, the European Space Agency and the Canadian Space Agency, and will launch in 2014.

Friday, March 26, 2010

The Webb Telescope "Trailer"


The Webb Telescope will be the premier observatory of the next decade, serving thousands of astronomers worldwide. It will study every phase in the history of our Universe, ranging from the first luminous glows after the Big Bang, to the formation of solar systems capable of supporting life on planets like Earth, to the evolution of our own Solar System.

Formerly known as the "Next Generation Space Telescope" (NGST) and considered the successor to the Hubble Space Telescope, the telescope was renamed in Sept. 2002 after former NASA administrator, James Webb.





For more information about the Webb Telescope go to: http://www.jwst.nasa.gov/


Saturday, March 20, 2010

JWST MIRI Replica Arrives at NASA Goddard




Image comment: The MIRI Structural Thermal Model at the Science and Technology Facilities Council’s Rutherford Appleton Laboratory
Image credits: Science and Technology Facilities Council (STFC)

As the Hubble Space Telescope begins to approach its limits, the American space agency is currently working on creating a replacement. Called the James Webb Space Telescope (JWT), the new observatory will be the largest one ever delivered to orbit. However, designing it is very difficult, as some of the technologies that are needed to make it a reality have yet to be developed. But progress is taking place nonetheless, with the spacecraft's heat shields already clearing tests, and some of its mirrors completed. Now, the time has come to test one of its primary scientific instruments.

The Mid InfraRed Instrument (MIRI) is one of the most important components of the new telescope. As such, it needs to undergo extensive testing, so that engineers can ensure it's both highly sensitive, and resistant to the rigors of flying in outer space and surviving a rocket launch. As part of these efforts, a working replica of the MIRI has been recently delivered to the NASA Goddard Space Flight Center, in Greenbelt, Maryland. Experts here call the instrument “the pioneering camera and spectrometer for the James Webb Space Telescope,” Space Fellowship reports.

The replica came a long way to reach Goddard. It was recently shipped from the United Kingdom, where it was produced at the Rutherford Appleton Laboratory, a laboratory operated by the Science and Technology Facilities Council (STFC/RAL). The new observatory represents the fruit of an international collaboration that includes NASA, the European Space Agency (ESA) and the Canadian Space Agency (CSA). These organizations agreed that the best possible successor to Hubble was a telescope that would be larger, and also capable of observing the Universe in infrared wavelengths.

“Receipt of the MIRI structural thermal model (STM) represents a major milestone in eight years of development work by the joint European Space Agency (ESA) and NASA Jet Propulsion Laboratory (JPL) instrument team. Tests with this prototype model of the MIRI, conducted at Rutherford Appleton Laboratories in the UK, have shown that this science instrument is on track to meet all of its performance requirements. Upon receipt of the STM, Goddard engineers will begin testing it with supporting systems in the Webb telescope Integrated Science Instrument Module to facilitate smooth integration of the flight model,” JWST Science Instrument Payload project scientist Matt Greenhouse, who is based at Goddard, says.

Thursday, March 18, 2010

Turning up the heat: Finding out how well the Webb telescope's sunshield will perform


Keeping an infrared telescope at very cold operating temperatures isn't an option, it's an absolute necessity. For the James Webb Space Telescope to see the traces of infrared light generated by stars and galaxies billions of light years away, it must be kept at cryogenic temperatures of under 50 Kelvin (-370 F). Otherwise, sunlight would warm the telescope and this heat from the telescope itself will swamp the very faint astronomical signals, effectively blinding the telescope's eye. The job of the huge, five-layer sunshield is to keep that from happening.

Serving as a radiation blocker, the sunshield is subjected to nearly 100,000 thermal watts of solar heat, and reduces that to one tenth of a watt on the cold side, a million to one reduction.

But how do you test a complicated structure the size of a tennis court? There isn't a cryogenic chamber on the planet big enough and building one doesn't make sense from a budget and practical standpoint. So Webb engineers have constructed a 1/3-scale model and a test facility to perform the critical thermal test of the sunshield system.

The thermal test had two main goals: 1- to verify that the sunshield design can actually block and redirect the sun's energy before it reaches the telescope; and 2- to verify the accuracy of computer thermal models used to predict how the full-size sunshield will perform. 'The flight sunshield will be deployed and visually inspected prior to flight, but only a computer simulation of its thermal performance will be used to determine if it's ready to launch,' explains Keith Parrish, Webb telescope Sunshield Manager at NASA's Goddard Space Flight Centre, Greenbelt, Md.

'This is very similar to wind tunnel testing of large aircraft,' he notes. 'Most aircraft, especially large commercial airliners, are simply too large to undergo full-size testing. Computer models, which extrapolate the test data from smaller scale model wind tunnel tests, are used to verify final design and predict the full size aircraft's performance. Our Webb sunshield 1/3-scale model test is a very similar approach.'

In space, the sunshield will be heated by the sun. For ground testing, the 1/3-scale model was placed in a thermal vacuum test chamber at lead contractor Northrop Grumman's manufacturing facilities in Redondo Beach, Calif. The sun's heat was simulated by electrical heater plates placed very close to, but not touching layer 1, the warm sun- facing layer. Power to the heaters was steadily increased until layer 1 reached similar temperatures as those expected in flight, well over 100 degrees C (212 F, the boiling point of water at sea level).

Approximately 400 temperature sensors were placed all over the sunshield. 'We also keep an eye on the chamber's gaseous helium-refrigerated shroud temperatures and liquid helium cooling plates,' adds Parrish. 'These cooling plates simulate the cold background temperature of space at the orbit of Webb, which is around 7 Kelvin (-446.8 F). We can't get these plates all the way down to 7 K, which is pretty close to absolute zero. The plates typically get down to the 15 to 25 K (-434.4 F. to -414.4 F) temperature range, so exact knowledge of their temperature is critical to understanding the sunshield's performance.'

The engineering team used the 1/3-scale tests for a trial run of a device called a radiometer. Hung or mounted around the sunshield, these devices measure the heat radiation that is bouncing around and between the sunshield, the cold plates and the chamber walls. Since this kind of effect doesn't occur in space, it's important to understand how this heat bouncing impacts the test results. When the flight instruments and observatory are tested at Goddard and Johnson Space Centre, these devices need to be working well.

Seven different testing conditions were used to gather temperature data, and these test conditions were tailored so that engineers can study how the sunshield performs in space under a variety of conditions. Some test conditions exaggerated or increased temperatures and heat flows in specific areas of the sunshield. Even though these test conditions do not simulate flight conditions, they're designed to isolate and better define particular variables used in computer thermal simulations. 'One specific test condition used a mechanism in the chamber to change or warp the sunshield's shape,' Parrish explained. 'Since proper shape is critical to the sunshield's performance, this test condition gave engineers important data so they could see if computer models can actually predict the thermal impact of shape changes.'

After the temperature data was gathered, engineers ran computer models over and over again with small changes to mimic the actual test conditions. The goal is to better match the temperature data from the sensors on the sunshield to the computer models. 'This is really the critical part in the whole testing process,' says Parrish. 'Gathering the test data was just the beginning. Understanding that data and how it applies to the flight sunshield's predicted thermal performance is the critical step.'

To understand how the membrane shape affects thermal performance, a Light Detection And Ranging (LIDAR) laser device took highly accurate shape measurements on each of the five layers of the sunshield at room temperature. These measurements were used to validate the computer model predictions of each membrane under ambient conditions. The computer models were then used to predict the membrane shapes over the various test conditions.

Later this spring, the thermal chamber will be modified with a window so that the LIDAR device can see into the chamber and measure the shape of layer 5, the coldest layer, near its cryogenic operating temperature, approximately 77 K (-320.8 F). This test will allow the engineers to confirm if the computer model's prediction of shape at temperature is correct.

Careful planning and following rigourous procedures paid off - the test was very successful because all test objectives were met and engineers were able to collect the data they needed. That data is being carefully analysed to see if the test temperatures accurately reflect the thermal performance of the flight sunshield. Data analysis is a lengthy process scheduled to be complete by the end of March 2010.

The 1/3-scale tests go a long way in establishing model verification well in advance of the flight test. As a result, the fidelity of the master model is improved, which adds flight confidence and reduces technical risk.

The thermal testing took place over four weeks, from Nov. 23 to Dec. 19, 2009 in Northrop Grumman's largest thermal vacuum chamber at the company's Aerospace Systems manufacturing facilities in Redondo Beach, Calif.

Source: NASA/Goddard Space Flight Centre